10.巧用分解质因数
例1 四个比1大的整数的积是144,写出由这四个数组成的比例式。
144=24×32
=(22×3)×[(2×3)×2]
=(4×3)×(6×2)
可组成4∶6=2∶3等八个比例式。
例2 三个连续自然数的积是4896,求这三个数。
4896=25×32×17
=24×17×(2×32)
=16×17×18
1728=26×33=(22×3)3=123
385=5×7×11
例4 19xx年小学数学奥林匹克试题初赛(C)卷题3:找出1992的所有不同的质因数,它们的和是多少?
1992=2×2×2×3×83
2+3+83=88
例5 甲数比乙数大9,两数的积是1620,求这两个数。
1620=22×34×5
=(32×22)×(32×5)
甲数是45,乙数是36。
例6 把14、30、33、75、143、169、4445、4953分成两组,每组四个数且积相等,求这两组数。
八个数的积等于2×7×2×3×5×3×11×3×5×5×11×13×13×13×5×7×127×3×13×127。
每组数的积为2×32×52×7×11×132×127。两组为
例7 600有多少个约数?
600=6×100=2×3×2×2×5×5
=23×3×52
只含因数2、3、5、2×3、2×5、3×5、2×3×5的约数分别为:
2、22、23;
3;
5、52;
2×3、22×3、23×3;
2×5、22×5、23×5、2×52、22×52、23×52;
3×5、3×52;
2×3×5、22×3×5、23×3×5、2×3×52、22×3×52、23×3×52。
不含2×3×5的因数的数只有1。
这八种情况约数的个数为;
3+1+2+3+6+2+6+1=24。
不难发现解题规律:把给定数分解质因数,写成幂指数形式,各指数分别加1后相乘,其积就是所求约数的个数。(3+1)×(1+1)×(2+1)=24。